API Draft Spec 17G

Subsea Well Intervention Systems HPHT considerations

January 28th 2014
BSEE MEETING

Introduction

- API RP 17G 1st edition: released 1995 for Completion/workover risers
- API RP 17G 2nd edition: 2006/ISO 13628-7 released 2005
 - Introduced the limit state design approach
 - Major updates on design requirements for pipe, connectors, material and connector qualification
 - Advanced riser design and connector qualification in the industry
- API 17G 3rd edition: (Ballot Draft) Excludes HPHT
 - Transition from RP to Spec. (Major Revision) Advances design process for WCP, SSTT & forms the basis for emerging well intervention systems
 - Fully self contained, ensuring system and component life cycle integrity
 - Includes:
 - Well Control Package,
 - Landing String
 - Intervention Work Over Control System

API SPEC 17G ENHANCEMENTS

Safety Strategy

 Improved alignment between the End User and the Design / Performance of the Equipment and Operational Program

Material Integrity

- Chemistry
- Prolongations
- True Stress / Strain Curves to optimize for non Linear analysis Process
- Charpy / Lateral Expansion

Design Process

- Static
- Cyclic loads
 - Fatigue (SN or Fracture Mechanics methods)

Enhance Qualification and Environmental Simulation process

- Annex K, L, and I
- Sand Slurry
- Dynamic Closure Testing -

Testing Methods

- FAT/ EFAT & SIT
- Crew drills

API Spec17G Safety Design Strategy

API SPEC 17G METALURGY & DESIGN

- Material properties, NDT, QC requirements compatible with the static and cyclic design methodologies
- Static design capacity methodology based on ASME VIII Div 2/Div 3, modified for offshore applications:
 - Strain limited approach to ensure:
 - Consistent structural design margins (Structural failure mode)
 - Component functionality (functional failure mode)
 - Assure NACE limits
- Look to TR8 for stress relaxation and operational aging of seals.

Comparison of codes

	API 17D	API SPEC 17G	ASME VIII 2	ASME VIII 3
Pressure limit	15K	15K	5K and above	10k and above
Analysis	Linear Elastic FEA	EP – 0.2% str/ Mod Limit Load	Elastic or EP + Str Hrd	EP + Str Hrd
Charpy V ¹⁾	20 J	40 J - 65 J	41 J (2 in)	41 J
Test specimens	QTC or Prolongation	Prolongation	Prolongation	Prolongation
Yield de-rating	180°C	50°C	40°C	40°C
Accidental load	No	Yes	Yes	Yes
Cyclic load	No/Yes ²	Yes	Yes	Yes
Surface NDE acceptance	3/16" (5 mm)	"No detectable cracks (< 1/16")"	3/16" (5 mm)	1/16" (1,6 mm)
		@ fatigue hot spots		

^{1) 75} ksi steel, 2 in thick

Status: Draft

EP = Elastic-Plastic FEA

^{2) 17}D mentions "fatigue considerations" but does not specify requirements and refers to 17G

Code Split between API 17G and API 17D

Open Water Intervention Mode

Thru-BOP/Drilling Riser Intervention Mode

Summary

- Design method consistent to dovetail with TR8:
 - The static design method gives consistent safety margin against failure
 - Provides consistent results for complex geometries and loads
 - The use of elastic-plastic method provides knowledge of strain in components
- Fatigue failure criteria dovetails with TR8 (below WCP, SSTT where primary barrier resides) so:
 - S-N curves applicable for environmental cyclic loads (>10,000 cycles per day) and pressure cycles (1,000 cycles for total life) for riser sections
 - Use of calibrated fatigue design factors for offshore applications
 (i.e. high fatigue design factor to limit potential crack size)
 - Inspectable components (i.e. temporary equipment)